Issue: New
Guarantee: 4 years
Applicable Industries: Building Materials Shops, Production Plant, Machinery Fix Retailers, Foods & Beverage Manufacturing unit, Residence Use, Meals Store, Building works , Strength & Mining, Promoting Business
Bodyweight (KG): eighteen KG
Showroom Place: Egypt, Turkey, Italy, France, Large torque 36mm planetary gearbox reducer electric motor with Micro tubular dc motor 24v dc equipment box motor Germany, Peru, Saudi Arabia, Indonesia, Russia, Spain, Thailand, Chile, UAE, Bangladesh, South Africa, Uzbekistan
Online video outgoing-inspection: Provided
Machinery Examination Report: Offered
Advertising and marketing Type: Common Merchandise
Kind: Shafts
Use: Tractors
Purposes: For Tractor, KA47 gearbox K Sequence substantial torque low rpm helical bevel electric motor pace gearbox Rotary Cultivator,Planter Device ,Farm and and so on
advantage: Plastic protect can operate normally in between -35 °C to 80 °C
High quality Manage: a hundred% inspection
Characteristics: Efficient performance
Surface Hardness: fifty eight-64HRC
Packaging Information: Cartons or pallets
Port: ZheJiang or HangZhou port

P pto shaft with shear bolt clutch with CE certificate

TORQUE Limiting Unit WITH BOLT AND Totally freeWHEELThis unit has the purposeful characteristics of a torque restrictingbolt jointly with individuals of a cost-free wheel. It ensures the vanishingof electrical power transmission by signifies of a bolt put eccentricallyto the axisof the joint. The torque transmitted is a purpose of place,dimension and quality of bolt utilised. It also ensures the transmissionof torque in only 1 path of rotation.

TORQUE Restricting Unit WITH 2 OR 4 FRICTIONDISCS AND HELICAL SPRINGSIt limits the torque transmitted by way of slippage of the componentsof friction on the clutch plates (without asbestos). The torque settingcan be diverse by adjusting the height of the coil springs. Thisclutch can be employed to absorbe torque peaks on startup of machineswith higher inertia.

TORQUE Limiting Gadget WITH 2 OR 4 FRICTIONDISCS AND BELLEVILLE SPRINGSIt restrictions the torque transmitted by means of slippage of the componentsof friction on the clutch plates (with out asbestos). The torque settingis prefi xed to the price of installation using conical Bellevillespring, and can not be modified. Modifying the placing is only possibleby changing the springs. Yet another edge for the security isthe compact design and style with out details of entanglement.

Automatic TORQUE Limiting DEVICEIs a torque limiter with mechanical disengaging and automaticreset, in which torque is transmitted by implies offour radial components pushed by a conical Belleville spring.The transmission restores routinely by lowering rotationspeed, after removing the lead to of the overload.

TORQUE Limiting Unit WITH PAWLSThis is a mechanical torque limiting system with radial acting pawl,which, at a established calibration benefit, arrive out of their slots againstthe motion of 2 helical springs , disconnecting the power transmission.The transmission is immediately restored decreasing thenumber of revolutions after interrupting the lead to of the overload.

Free WHEELThis device permits the transmission of torque in 1 route (fromthe tractor to the machine). The freewheel stops the return ofpower to the transmission when the inertia of the machine is particularlyhigh. Are accessible the regular variation RF, the reversedversion RFI and the universal variation RFS.

Rewards / Attributes:
one. Resources:
Our company has acquired metal from several large metal teams , Agras T20 H2o tank ( T20 spray tank ) Agras T20 Portion drone kit drone equipment this kind of as HangZhou Metal Mill, ZheJiang Bashan Steel Mill, ZheJiang Shrugging Metal Mill whose steel have excellent mechanical homes and security of chemical element. it maintain the shaft to be of large good quality.
two. Manufacture Procession
Initial, we have our own Substantial-precision Digital Machining heart for CZPT creating in unique CZPT Workshop, superb CZPT make item gorgeous physical appearance and its measurement accurately.
The next, we undertake blasting procession, taking away Oxidation area, make the floor to be bright and cleanse and uniform and lovely.
The 3rd, in warmth treatment method: We use the Managed-environment Automatic warmth therapy Furnace,
3. Quality Handle:
The quality manage is strictly executed from purchasing raw materials in warehouse to diverse machining procession and to closing packing. 100% inspection throughout creation .
4. Generation Ability
One PTO shaft , each thirty day period can create 16000 pcs.

p pto shaft with shear bolt clutch with CE certification

Organization Details

ProductCross journal measurement540dak-rpm1000dak-rpm
Sequence one22mm54mm12KW16HP18KW25HP
Collection 223.8mmsixty one.3mm15KW21HP23KW31HP
Collection 327mm70mm26KW35HP40KW55HP
Series four27mm74.6mm26KW35HP40KW55HP
Series 530.2mm80mm35KW47HP54KW74HP
Collection sixthirty.2mm92mm47KW64HP74KW100HP
Series 7thirty.2mm106.5mm55KW75HP87KW18HP
Series 835mm106.5mm 70KW95HP110KW150HP
Sequence 3838mm102mm70KW95HP110KW150HP

Packaging & Delivery

Our Services Targets of Global Sourcing at PAPAYA:Reduce purchasing costsEnhance the qualityMinimize risks inside of the source chainSecure improvements of prime suppliers throughout the world

Analytical Approaches to Estimating Contact Pressures in Spline Couplings

A spline coupling is a type of mechanical connection between two rotating shafts. It consists of two parts – a coupler and a coupling. Both parts have teeth which engage and transfer loads. However, spline couplings are typically over-dimensioned, which makes them susceptible to fatigue and static behavior. Wear phenomena can also cause the coupling to fail. For this reason, proper spline coupling design is essential for achieving optimum performance.

Modeling a spline coupling

Spline couplings are becoming increasingly popular in the aerospace industry, but they operate in a slightly misaligned state, causing both vibrations and damage to the contact surfaces. To solve this problem, this article offers analytical approaches for estimating the contact pressures in a spline coupling. Specifically, this article compares analytical approaches with pure numerical approaches to demonstrate the benefits of an analytical approach.
To model a spline coupling, first you create the knowledge base for the spline coupling. The knowledge base includes a large number of possible specification values, which are related to each other. If you modify one specification, it may lead to a warning for violating another. To make the design valid, you must create a spline coupling model that meets the specified specification values.
After you have modeled the geometry, you must enter the contact pressures of the two spline couplings. Then, you need to determine the position of the pitch circle of the spline. In Figure 2, the centre of the male coupling is superposed to that of the female spline. Then, you need to make sure that the alignment meshing distance of the two splines is the same.
Once you have the data you need to create a spline coupling model, you can begin by entering the specifications for the interface design. Once you have this data, you need to choose whether to optimize the internal spline or the external spline. You’ll also need to specify the tooth friction coefficient, which is used to determine the stresses in the spline coupling model 20. You should also enter the pilot clearance, which is the clearance between the tip 186 of a tooth 32 on one spline and the feature on the mating spline.
After you have entered the desired specifications for the external spline, you can enter the parameters for the internal spline. For example, you can enter the outer diameter limit 154 of the major snap 54 and the minor snap 56 of the internal spline. The values of these parameters are displayed in color-coded boxes on the Spline Inputs and Configuration GUI screen 80. Once the parameters are entered, you’ll be presented with a geometric representation of the spline coupling model 20.

Creating a spline coupling model 20

The spline coupling model 20 is created by a product model software program 10. The software validates the spline coupling model against a knowledge base of configuration-dependent specification constraints and relationships. This report is then input to the ANSYS stress analyzer program. It lists the spline coupling model 20’s geometric configurations and specification values for each feature. The spline coupling model 20 is automatically recreated every time the configuration or performance specifications of the spline coupling model 20 are modified.
The spline coupling model 20 can be configured using the product model software program 10. A user specifies the axial length of the spline stack, which may be zero, or a fixed length. The user also enters a radial mating face 148, if any, and selects a pilot clearance specification value of 14.5 degrees or 30 degrees.
A user can then use the mouse 110 to modify the spline coupling model 20. The spline coupling knowledge base contains a large number of possible specification values and the spline coupling design rule. If the user tries to change a spline coupling model, the model will show a warning about a violation of another specification. In some cases, the modification may invalidate the design.
In the spline coupling model 20, the user enters additional performance requirement specifications. The user chooses the locations where maximum torque is transferred for the internal and external splines 38 and 40. The maximum torque transfer location is determined by the attachment configuration of the hardware to the shafts. Once this is selected, the user can click “Next” to save the model. A preview of the spline coupling model 20 is displayed.
The model 20 is a representation of a spline coupling. The spline specifications are entered in the order and arrangement as specified on the spline coupling model 20 GUI screen. Once the spline coupling specifications are entered, the product model software program 10 will incorporate them into the spline coupling model 20. This is the last step in spline coupling model creation.

Analysing a spline coupling model 20

An analysis of a spline coupling model consists of inputting its configuration and performance specifications. These specifications may be generated from another computer program. The product model software program 10 then uses its internal knowledge base of configuration dependent specification relationships and constraints to create a valid three-dimensional parametric model 20. This model contains information describing the number and types of spline teeth 32, snaps 34, and shoulder 36.
When you are analysing a spline coupling, the software program 10 will include default values for various specifications. The spline coupling model 20 comprises an internal spline 38 and an external spline 40. Each of the splines includes its own set of parameters, such as its depth, width, length, and radii. The external spline 40 will also contain its own set of parameters, such as its orientation.
Upon selecting these parameters, the software program will perform various analyses on the spline coupling model 20. The software program 10 calculates the nominal and maximal tooth bearing stresses and fatigue life of a spline coupling. It will also determine the difference in torsional windup between an internal and an external spline. The output file from the analysis will be a report file containing model configuration and specification data. The output file may also be used by other computer programs for further analysis.
Once these parameters are set, the user enters the design criteria for the spline coupling model 20. In this step, the user specifies the locations of maximum torque transfer for both the external and internal spline 38. The maximum torque transfer location depends on the configuration of the hardware attached to the shafts. The user may enter up to four different performance requirement specifications for each spline.
The results of the analysis show that there are two phases of spline coupling. The first phase shows a large increase in stress and vibration. The second phase shows a decline in both stress and vibration levels. The third stage shows a constant meshing force between 300N and 320N. This behavior continues for a longer period of time, until the final stage engages with the surface.

Misalignment of a spline coupling

A study aimed to investigate the position of the resultant contact force in a spline coupling engaging teeth under a steady torque and rotating misalignment. The study used numerical methods based on Finite Element Method (FEM) models. It produced numerical results for nominal conditions and parallel offset misalignment. The study considered two levels of misalignment – 0.02 mm and 0.08 mm – with different loading levels.
The results showed that the misalignment between the splines and rotors causes a change in the meshing force of the spline-rotor coupling system. Its dynamics is governed by the meshing force of splines. The meshing force of a misaligned spline coupling is related to the rotor-spline coupling system parameters, the transmitting torque, and the dynamic vibration displacement.
Despite the lack of precise measurements, the misalignment of splines is a common problem. This problem is compounded by the fact that splines usually feature backlash. This backlash is the result of the misaligned spline. The authors analyzed several splines, varying pitch diameters, and length/diameter ratios.
A spline coupling is a two-dimensional mechanical system, which has positive backlash. The spline coupling is comprised of a hub and shaft, and has tip-to-root clearances that are larger than the backlash. A form-clearance is sufficient to prevent tip-to-root fillet contact. The torque on the splines is transmitted via friction.
When a spline coupling is misaligned, a torque-biased thrust force is generated. In such a situation, the force can exceed the torque, causing the component to lose its alignment. The two-way transmission of torque and thrust is modeled analytically in the present study. The analytical approach provides solutions that can be integrated into the design process. So, the next time you are faced with a misaligned spline coupling problem, make sure to use an analytical approach!
In this study, the spline coupling is analyzed under nominal conditions without a parallel offset misalignment. The stiffness values obtained are the percentage difference between the nominal pitch diameter and load application diameter. Moreover, the maximum percentage difference in the measured pitch diameter is 1.60% under a torque of 5000 N*m. The other parameter, the pitch angle, is taken into consideration in the calculation.

China supplier Agricultural machine tractor pto drive shaft torque limiter parts     agricultural pto drive shafts